Verification for existence of solutions of linear complementarity problems
نویسندگان
چکیده
منابع مشابه
Verification of Solutions for Almost Linear Complementarity Problems
The paper establishes a computational enclosure of the solution of a nonlinear complementarity problem x ≥ 0, l(x) ≥ 0, x l(x) = 0, where l(x) = Mx+ Φ(x) is a so-called almost linear mapping with an H-matrix M with positive diagonal elements and an increasing diagonal mapping Φ. The procedure also delivers a simple proof for the uniqueness of the solution. Mathematics Subject Classification (20...
متن کاملSparse solutions of linear complementarity problems
This paper considers the characterization and computation of sparse solutions and leastp-norm (0 < p < 1) solutions of the linear complementarity problems LCP(q,M). We show that the number of non-zero entries of any least-p-norm solution of the LCP(q,M) is less than or equal to the rank of M for any arbitrary matrix M and any number p ∈ (0, 1), and there is p̄ ∈ (0, 1) such that all least-p-norm...
متن کاملIntegral Solutions of Linear Complementarity Problems
We characterize the class of integral square matrices M having the property that for every integral vector q the linear complementarity problem with data M; q has only integral basic solutions. These matrices, called principally unimodular matrices, are those for which every principal nonsingular submatrix is unimodular. As a consequence , we show that if M is rank-symmetric and principally uni...
متن کاملExistence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
متن کاملImproved infeasible-interior-point algorithm for linear complementarity problems
We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2001
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(99)00272-4